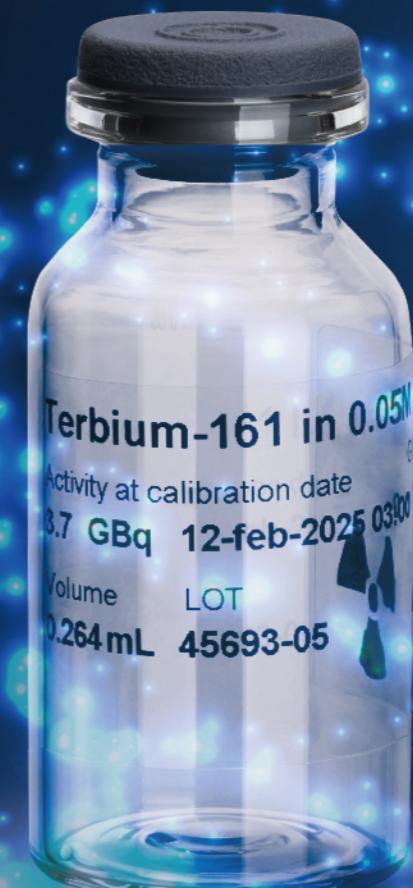


Our Commitment

At Primo Biotechnology, our mission is to accelerate the availability of cutting-edge radionuclides like Terbium-161, offering physicians and researchers powerful tools to advance cancer care. In partnership with TerThera B.V., we are committed to supporting the next generation of Radioligand Therapy (RLT).

Contact Us


As an Asia distribution hub based in Taiwan, Primo is committed to providing efficient logistics services, ensuring the rapid delivery of radioisotopes to multiple countries across the region. This minimizes transport time and cold chain risks, preserving the product's integrity and potency.

Primo Biotechnology Co., Ltd.
14F., No.167, Dunhua N. Rd., Songshan Dist., Taipei City 105, Taiwan
order@primobt.com

A New Era in Radioligand Therapy

TERATHERA
TERBIUM THERANOSTICS

TERBIUM-161
NCA
GMP GRADE AVAILABLE

Next-Generation Radionuclide for Precision Oncology

Non-Carrier added (NCA) lanthanide Terbium-161 (Tb-161) is produced by neutron activation of Gadolinium-160 and offers a unique decay profile, setting new standards for targeted radioligand therapy (RLT).

Radioligand Therapy

Using PSMA and SSTR analogues, Terbium-161 has shown excellent bioequivalence presenting a biodistribution comparable to the currently used radiolanthanides. Additionally, the 16-fold increase in Auger and conversion electrons is expected to improve the cellular absorbed dose up to 3-fold compared to currently used radiolanthanides, while allowing for treatment of both primary and undetectable (micro) metastasis, improving the overall disease control.

Imaging Optimized

Allowing optimization of the SPECT reconstruction parameters, Terbium-161 may provide for higher spatial resolution SPECT imaging, leading to the detection of smaller lesions that provides input for a further optimized treatment plan.

Radiation Safety

Terbium-161 provides for an immediate decrease in dose rate allowing for a significant improvement in general radiation safety. This optimization of radiation safety may extend current treatment room capacity for Radioligand Therapy. The non-carrier added (NCA) product allows optimal control of radioactive waste flow with reduced decay time in local storage.

Product Information

Potential Indications	Prostate, Breast, Neuroendocrine and Solid Cancers
Formulation	Tb-161 in aqueous 0.05M HCl Decays to stable Dy-161
Chemical Purity	>99% (ICP-MS)
Radiochemical Purity	>99% (TLC)
Half-life	6.967 (11) days (2022 update)
Emission	β^- 154 keV (average) γ 49 keV (17%) γ 75 keV (10%)
Therapeutic Advantages	<ul style="list-style-type: none">• Factor 3 higher cellular absorbed dose• High LET Conversion & Auger electrons
Available	Global supply since Q1 2023